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Precision Medicine

Treat the patient, not the disease.
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Simplifying Assumptions

Binary Treatments

Referring to two competing
treatment options at each

stage.

Known Decision Points
Finite and deterministic
number and timing of

decisions.

At decision point j , we take Aj ∈ {0, 1}.

The work today does not require this
assumption, though discrete treatments are

required.
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Simplifying Assumptions

Binary Treatments

Referring to two competing
treatment options at each

stage.

Known Decision Points
Finite and deterministic
number and timing of

decisions.

We require decisions to be made at a finite
and deterministic number of points.

We assume that these are discrete and
interchangeable between patients.
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Notation Summary

1. Decision points:
j ∈ {1, 2, . . . ,K}.

2. Treatments (at time j):

Aj ∈ {0, 1}.

3. Individual information (at time j):

Xj ∈ Rℓj .

4. Outcome (observed at time K ):

Y ∈ R.
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Optimal DTR Estimation

Our goal is to determine

d = {d1, d2, . . . , dK}, dj : Rℓ∗j −→ {0, 1},

such that Y is maximized in expectation.
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Why is DTR Estimation Hard?

XjA2X2A1X1 Aj XK AK YPatient History: HK
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Modelling the Outcome

E [Y |AK ,HK ] = f (HK ) + AKC (HK )

AK

HK Y
Treatment-Free Model

f (HK )

Blip Model

C (HK )
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P(AK = 1|HK )
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G-Estimation: Mathematically (Robins 2004)

1. Specify the required models at stage K .

CK (HK ;ψK ); fK (HK ; βK ); πK (HK ;αK ).

2. Solve for ψK in

estimating equations.

3. Compute a pseduo-outcome for each individual.
4. Repeat the previous steps, replacing Y with Ṽj+1 at each stage j .
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G-Estimation: Mathematically (Robins 2004)

1. Specify the required models at stage K .
2. Solve for ψK in

estimating equations.

n∑
i=1

λK (HK ,i)

AK ,i − πK (AK ,i ;αK )︸ ︷︷ ︸
Treatment Model


×

Yi − AK ,i CK (HK ,i ;ψK )︸ ︷︷ ︸
Blip Model

− fK (HK ,i ; βK )︸ ︷︷ ︸
Treatment-Free Model

 = 0.

3. Compute a pseduo-outcome for each individual.
4. Repeat the previous steps, replacing Y with Ṽj+1 at each stage j .
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1. Specify the required models at stage K .
2. Solve for ψK in estimating equations.
3. Compute a pseduo-outcome for each individual.

Ṽj =

{
Ṽj+1 + (Aopt

j − Aj)Cj(Hj ;ψj) j ≤ K

Y j = K + 1
.

4. Repeat the previous steps, replacing Y with Ṽj+1 at each stage j .
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G-Estimation: Mathematically (Robins 2004)

1. Specify the required models at stage K .
2. Solve for ψK in estimating equations.
3. Compute a pseduo-outcome for each individual.
4. Repeat the previous steps, replacing Y with Ṽj+1 at each stage j .

G-estimation produces doubly robust estimators for the blip
parameters.
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Causal Assumptions

SUTVA
Stable Unit Treatment Value

Assumption

NUC
No Unmeasured
Confounders.

Positivity

No Extrapolation Outside
the Data.

There is only one version of each treatment
option, and there is no interference between

patients in the data.
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Causal Assumptions

SUTVA
Stable Unit Treatment Value

Assumption

NUC
No Unmeasured
Confounders.

Positivity

No Extrapolation Outside
the Data.

There are no factors which influence both the
treatment assignment as well as the outcome,

which are not measured.
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Causal Assumptions

SUTVA
Stable Unit Treatment Value

Assumption

NUC
No Unmeasured
Confounders.

Positivity

No Extrapolation Outside
the Data.

All treatment regimes under consideration
must have been possible for all individuals in

the data.
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The Problem of Nonadherence

Prescribed Treatment

Not Prescribed
Treatment

Takes Treatment

Does not Take
Treatment

Assumed Model (

Actual Model "

Prescribed Treatment

Not Prescribed
Treatment

Takes Treatment

Does not Take
Treatment
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Key Decision

Is the intervention or the intended
intervention of more interest.
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Intention-to-Treat Analyses

Treat the assigned intervention as the
causal quantity of interest.
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Intention-to-Treat Analyses

Treat the assigned intervention as the
causal quantity of interest.

Random Assignment

Treatment assignment
is the randomized
quantity, and so
non-confounded.

Real-World

Nonadherence exists in
the “real-world”, and

so should be
factored-in.

Standard Practice

It is standard practice,
and better than
as-treated or
per-protocol.
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ITTs can be very valuable ...
but this is not the whole story.
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Problems with ITTs

Altered Causal Estimand
We estimate the effect of
treatment assignment not

treatment itself.

Non-Attenuation
Unpredictable as to whether

an ITT correctly ranks
multiple treatments.

Transportability Concerns

Are there differences in how
patients adhere inside and

outside the study?

There is likely substantial scientific interest in
the biological efficacy of treatment, if it had

been adhered to.

ITTs cannot estimate treatment efficacy in an
unbiased manner.
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multiple treatments.

Transportability Concerns

Are there differences in how
patients adhere inside and

outside the study?

Despite claims of effect attenuation under
nonadherence, there is no statistical guarantee

that treatment rankings are preserved.

ITTs cannot be used to compare treatments
based on treatment efficacy.
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Problems with ITTs

Altered Causal Estimand
We estimate the effect of
treatment assignment not

treatment itself.

Non-Attenuation
Unpredictable as to whether

an ITT correctly ranks
multiple treatments.

Transportability Concerns

Are there differences in how
patients adhere inside and

outside the study?

The adherence rates may differ between the
sample and population.

ITT Effect = Adherence×Treatment Efficacy.

Does adherence remain the same in the
population?
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Transportability Concerns

Should we conduct research into
improving adherence?
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Transportability Concerns

Should we use treatments in a supervised
setting?
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ITTs can be very valuable ...
but this is not the whole story.

See for instance Sheiner and Rubin (1995) or Shrier, Verhagen, and
Stovitz (2017).
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What other options do we really have?
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ITTs for DTRs: A Justification

1. In a DTR, we are predicting the optimal treatment regime, from observed data.

2. Suppose that the outcome is such that

E [Y |A,A∗,X ] = X ′β + A · X ′ψ.

3. Optimal treatment depends only on sign(X ′ψ).
4. Under certain assumptions, a “naive” OLS estimator for ψ has

ψ̂(X ,A∗)
p−→ ψ∗ = ψ [P(A = 1|A∗ = 1)− P(A = 1|A∗ = 0)] .

5. This quantity is such that sign(X ′ψ∗) = sign(X ′ψ).
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ITTs for DTRs: A Refutation

This is only true under the exclusion
restriction, with constant non-adherence
probabilities, in the single-stage setting.
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Additional Problems with Nonadherence in DTRs

Stable Treatments

Do treatment options
remain binary?

Reported Treatments

What if we do not
measure prescribed

treatment?

If a patient with A∗ = 1 is non-adherent, is
that the same as a patient A = 0?

When considering nonadherence, it becomes
possible that new treatment options are

introduced.
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Additional Problems with Nonadherence in DTRs

Stable Treatments

Do treatment options
remain binary?

Reported Treatments

What if we do not
measure prescribed

treatment?

We have focused on prescribed treatment as
it compares to actual treatment. What about

reported treatment?

A∗ −→ A −→ A†.
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Summary

To justify use of an ITT, we need to answer:
1. Is it the right causal effect or is the model simple enough to correspond with

treatment-efficacy?
2. Does the SUTVA still hold, even when considering the adherence data?
3. Does the NUC assumption still hold, even when considering the reported data?

If not, we need another alternative.
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Proposed Solution: A modified version of G-estimation

Treatment Prescription

Alter the treatment model to
be a treatment-prescription
model.

Additional Model
Add in a fourth component
for adherence probabilities.

Alter Existing Models

Change the existing models
to be computable, given
observed data.

Instead of specifying a treatment model, giving the
probability of receiving treatment, we specify a

treatment-prescription model, giving the probability of
treatment assignment.
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Treatment Prescription

Alter the treatment model to
be a treatment-prescription
model.

Additional Model
Add in a fourth component
for adherence probabilities.

Alter Existing Models

Change the existing models
to be computable, given
observed data.

In addition to the blip, treatment-free, and
treatment-prescription models, we must now also specify a

misclassification model.
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Proposed Solution: A modified version of G-estimation

Treatment Prescription

Alter the treatment model to
be a treatment-prescription
model.

Additional Model
Add in a fourth component
for adherence probabilities.

Alter Existing Models

Change the existing models
to be computable, given
observed data.

When using treatment indicators in the existing models,
we need to update the terms to be conditioned on

treatment assignment instead. This involves making use of
the misclassification model throughout.
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G-Estimation with Nonadherence: Mathematically

The blip parameters are estimated by solving

n∑
i=1

λ∗K (H
∗
K ,i)

A∗
K ,i − π∗K (A

∗
K ,i ;α

∗
K )︸ ︷︷ ︸

Treatment Prescription Model


×

Yi − P(AK ,i = 1|A∗
K ,i ,HK ,i)︸ ︷︷ ︸

Misclassification Model

C ∗
K (H

∗
K ,i ;ψ

∗
K )︸ ︷︷ ︸

Blip Model

− f ∗K (H
∗
K ,i ; β

∗
K )︸ ︷︷ ︸

Treatment-Free Model

 = 0.
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Modified G-Estimation

1. The resulting estimators are doubly robust.

2. Can make use of either treatment prescription or reported treatment.
3. Easily accommodates multiple treatments for those who are non-adherent.
4. Flexibility in the estimation of misclassification models. Can make use of:

▶ Internal validation;
▶ External validation;
▶ Sensitivity analyses.

5. Provides estimates of both treatment efficacy and adherence probabilities, allowing
ITT results to be recovered.
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Drawbacks to Modified G-Estimation

Despite the benefits to the modified G-estimation approach, there are
further considerations to make.
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Despite the benefits to the modified G-estimation approach, there are
further considerations to make.

Complexity

The modified method
requires more

complexity in the
modelling than the
standard approach.

Extra Modelling

Both the blip and
misclassification

models need to be
correct for valid

estimation.

Independence Assumptions

There are formal
independence

assumptions required
for causal conclusions,
which may be violated.
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Conclusions

ITTs play an important role, but should be considered
critically.

Approaches that estimate treatment efficacy directly are
possible but may require further modelling, complicating

the assumptions.
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Thank You!

www.dylanspicker.com | dylan.spicker@uwaterloo.ca
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Theorem 7.5.1 (Consistency of Modified G-Estimation)

Theorem
Suppose that for j = 1, . . . ,K and i = 1, . . . , n, we know P(A∗

i ,j |H∗
i ,j) and π∗j (H

∗
i ,j ,A

∗
i ,j),

and we correctly specify the form of C ∗
j (H

∗
i ,j ;ψj). Then the ψ̂j which are estimated by

solving U∗
j (ψ̂j) = 0 are consistent for the true ψj , under the following independence

assumptions (I.A.):
I.A. (1): E [Vj+1(Hj)|Hj ,Aj ,A

∗
j ] = E [Vj+1(Hj)|Hj ,Aj ] for all j = 1, . . . ,K .

I.A. (2): E [Cj(Hj)|Aj = 1,H∗
j ,A

∗
j ] = E [Cj(Hj)|H∗

j ,A
∗
j ] for all j = 1, . . . ,K .

I.A. (3): E [νj(Hj)|H∗
j ,A

∗
j ] = E [νj(Hj)|H∗

j ] for all j = 1, . . . ,K .
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Theorem 7.7.1 (Asymptotic Normality of Modified G-Estimation)

Theorem (Asymptotic Normality of Modified G-Estimation)

Suppose that for j = 1, . . . ,K and i = 1, . . . , n, we consistently estimate P(A∗
i ,j |H∗

i ,j)
and π∗j (H

∗
i ,j ,A

∗
i ,j) through corresponding unbiased estimating equations, and we

correctly specify the form of C ∗
j (H

∗
i ,j ;ψj). Then the (ψ̂1, . . . , ψ̂K ) which are estimated

as components when solving U∗
j = 0 (Equation (??)) are asymptotically normal, under

the independence assumptions from Theorem 1, and the regularity conditions set out by
Robins 2004 surrounding exceptional laws. Denoting Ψ̂ = (ψ̂1, . . . , ψ̂K ), we get that, as
n → ∞, √

n
(
Ψ̂−Ψ

)
d−→ N (0,ΣΨ) .

Here ΣΨ = IΨΣΘIΨ, IΨ is the diagonal matrix with 1’s on the diagonal entries
corresponding to the locations of the Ψ parameters in Θ, Θ is the solution to
E [U∗(Θ)] = 0, and ΣΘ is sandwich variance matrix based on U∗.
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Pseudo Outcome Justification (Nonadherence)

In the event that there are no treatment indicators in the blip function, then the blip
function is exactly known when ψj is known, and Aopt

i ,j will be correctly specified.
Suppose that for Ck+1, only Ak is involved in the computation. Then, knowing the
form of Ck+1 we can say that

E
[
Aopt
k+1Ck+1(Hk+1)

∣∣H∗
k+1,A

∗
k+1

]
= P(Ak = 1|H∗

k+1,A
∗
k+1)E

[
Aopt
k+1Ck+1(Hk+1)

∣∣H∗
k+1,A

∗
k+1,Ak = 1

]
+
(
1 − P(Ak = 1|H∗

k+1,A
∗
k+1)

)
E
[
Aopt
k+1Ck+1(Hk+1)

∣∣H∗
k+1,A

∗
k+1,Ak = 0

]
= π∗k(H

∗
k+1)I

{
Ck+1(H

∗
k+1,Ak = 1) > 0

}
Ck+1(H

∗
k+1,Ak = 1)

+
[
1 − π∗k(H

∗
k+1)

]
I
{
Ck+1(H

∗
k+1,Ak = 0) > 0

}
Ck+1(H

∗
k+1,Ak = 0).

We can take

Ṽj = Ṽj+1 + π∗j−1(H
∗
j )I

{
Cj(H

∗
j ,Aj = 1) > 0

}
Cj(H

∗
j ,Aj = 1)

+
[
1 − π∗j−1(H

∗
j )
]
I
{
Cj(H

∗
j ,Aj = 0) > 0

}
Cj(H

∗
j ,Aj = 0)− π∗j (H

∗
i ,j)C

∗
j (H

∗
i ,j).
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